Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474618

RESUMO

The analysis of enantiomers in food has significant implications for food safety and human health. Conventional analytical methods employed for enantiomer analysis, such as gas chromatography and high-performance liquid chromatography, are characterized by their labor-intensive nature and lengthy analysis times. This review focuses on the development of rapid and reliable biosensors for the analysis of enantiomers in food. Electrochemical and optical biosensors are highlighted, along with their fabrication methods and materials. The determination of enantiomers in food can authenticate products and ensure their safety. Amino acids and chiral pesticides are specifically discussed as important chiral substances found in food. The use of sensors replaces expensive reagents, offers real-time analysis capabilities, and provides a low-cost screening method for enantiomers. This review contributes to the advancement of sensor-based methods in the field of food analysis and promotes food authenticity and safety.


Assuntos
Técnicas Biossensoriais , Praguicidas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Alimentos , Praguicidas/análise , Cromatografia Gasosa , Estereoisomerismo
2.
Proc Natl Acad Sci U S A ; 121(13): e2310469121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502692

RESUMO

The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape. L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs-protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50 values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Anticorpos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Anal Chem ; 96(14): 5677-5685, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533607

RESUMO

Reactive oxygen species (ROS) are closely associated with the redox balance of the physiological environment, and monitoring ROS can aid in the early diagnosis of many diseases, including cancer. In this study, chiral vanadium trioxide/vanadium nitride (V2O3/VN) nanoparticles (NPs) modified with an organic dye (cyanine 3 [Cy3]) were prepared for ROS sensing. Chiral V2O3/VN NPs were prepared with the "ligand-induced chirality" strategy and showed a g-factor of up to 0.12 at a wavelength of 512 nm. To the best of our knowledge, this g-factor is the highest value of all chiral ceramic nanomaterials. The very high g-factor of the nanoprobe confers very high sensitivity, because the higher g-factor, the higher sensitivity. In the presence of ROS, V3+ in the chiral V2O3/VN nanoprobe undergoes a redox reaction to form V2O5, reducing the circular dichroism and absorbance signals, whereas the fluorescence signal of Cy3 is restored. With this nanoprobe, the limits of detection for the circular dichroic and fluorescence signals in living cells are 0.0045 nmol/106 and 0.018 nmol/106 cells, respectively. This chiral nanoprobe can also monitor ROS levels in vivo by fluorescence. This strategy provides an innovative approach to the detection of ROS and is expected to promote the wider application of chiral nanomaterials for biosensing.


Assuntos
Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Vanádio
4.
J Food Sci ; 89(3): 1310-1323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343295

RESUMO

Titanium dioxide (TiO2 ) nanomaterials have attracted significant attention due to their good biocompatibility and potential for multifunctional applications. In the last few years, there has been growing interest in the use of TiO2 nanomaterials in the food industry. However, a systematic review of the synthesis methods, properties, and applications of TiO2 nanomaterials in the food industry is lacking. In this review, we provide a summary of the synthesis and properties of TiO2 nanomaterials and their composites, with a focus on their applications in the food industry. We also discuss the potential benefits and risks of using TiO2 nanomaterials in food applications. This review aims to promote food innovation and improve food quality and safety.


Assuntos
Nanoestruturas , Titânio , Indústria Alimentícia , Qualidade dos Alimentos
5.
Adv Mater ; 36(5): e2308469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37766572

RESUMO

Excessive accumulation of reactive oxygen species (ROS) can lead to oxidative stress and oxidative damage, which is one of the important factors for aging and age-related diseases. Therefore, real-time monitoring and the moderate elimination of ROS is extremely important. In this study, a ROS-responsive circular dichroic (CD) at 553 nm and magnetic resonance imaging (MRI) dual-signals chiral manganese oxide (MnO2 ) nanoparticles (NPs) are designed and synthesized. Both the CD and MRI signals show excellent linear ranges for intracellular hydrogen peroxide (H2 O2 ) concentrations, with limits of detection (LOD) of 0.0027 nmol/106 cells and 0.016 nmol/106 cells, respectively. The lower LOD achieved with CD detection may be attributable to its higher anti-interference capability from the intracellular matrix. Importantly, ROS-induced cell aging is intervened by chiral MnO2 NPs via redox reactions with excessive intracellular ROS. In vivo experiments confirm that chiral MnO2 NPs effectively eliminate ROS in skin tissue, reduce oxidative stress levels, and alleviate skin aging. This approach provides a new strategy for the diagnosis and treatment of age-related diseases.


Assuntos
Nanopartículas , Óxidos , Espécies Reativas de Oxigênio , Compostos de Manganês , Peróxido de Hidrogênio
6.
ACS Nano ; 18(1): 641-651, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112427

RESUMO

Titanium dioxide (TiO2) has attracted significant attention in the fields of antibacterial activity and pollutant degradation due to its well-known photocatalytic properties. However, the application of TiO2 is significantly limited by its large band gap width, which only allows excitation by ultraviolet light below 400 nm. Here, we propose the use of surface chiral functionalization of TiO2 to tune its band gap width, thus enabling it to be excited by near-infrared-region light (NIR), resulting in the effective separation of electron-hole pairs. By controlling the solvent polarity and forming numerous weak interactions (such as hydrogen bonding) between chiral ligands and TiO2, we successfully prepared chiral TiO2 superparticles (SPs) that exhibited a broad circular dichroism (CD) absorption at 792 nm. Under circularly polarized light (CPL) at 808 nm, the chiral SPs induced the separation of electron-hole pairs in TiO2, thus generating hydroxyl and singlet oxygen radicals. Antibacterial tests under CPL in NIR showed that the chiral TiO2 SPs exhibited excellent antibacterial performance, with inhibition rates of 99.4% and 100% against Gram-positive and Gram-negative bacteria, respectively. Recycling-reuse experiments and biocompatibility evaluation of the material demonstrated that the chiral TiO2 SPs are stable and safe antibacterial materials, thus indicating the potential application of chiral TiO2 SPs in antibacterial aspects of medical implants.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Raios Ultravioleta , Titânio/farmacologia
7.
Chem Commun (Camb) ; 59(87): 12959-12971, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37823263

RESUMO

Chiral inorganic nanomaterials have emerged as a highly promising area of research in nanoscience due to their exceptional light-matter interaction and vast potential applications in chiral sensing, asymmetric catalysis, enantiomer separation, and negative-index materials. We present an overview of the latest advances in chiral inorganic nanomaterials including chiral individual nanoparticles, chiral assemblies, and chiral film-based sensors over the past ten years. Additionally, we discuss the challenges and future perspectives for developing chiral nanomaterials in biosensing applications.


Assuntos
Nanopartículas , Nanoestruturas , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 62(43): e202311416, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37677113

RESUMO

Here, we report the synthesis of chiral selenium nanoparticles (NPs) using cysteine and the interfacial assembly strategy to generate a self-assembled nanomembrane on a large-scale with controllable morphology and handedness. The selenide (Se) NPs exhibited circular dichroism (CD) bands in the ultraviolet and visible region with a maximum intensity of 39.96 mdeg at 388 nm and optical anisotropy factors (g-factors) of up to 0.0013 while a self-assembled monolayer nanomembrane exhibited symmetrical CD approaching 72.8 mdeg at 391 nm and g-factors up to 0.0034. Analysis showed that a photocurrent of 20.97±1.55 nA was generated by the D-nanomembrane when irradiated under light while the L-nanomembrane generated a photocurrent of 20.58±1.36 nA. Owing to the asymmetric intensity of the photocurrent with respect to the handedness of the nanomembrane, an ultrasensitive recognition of enantioselective kynurenine (Kyn) was achieved by the ten-layer (10L) D-nanomembrane exhibiting a photocurrent for L-kynurenine (L-Kyn) that was 8.64-fold lower than that of D-Kyn, with a limit of detection (LOD) of 0.0074 nM for the L-Kyn, which was attributed to stronger affinity between L-Kyn and D-Se NPs. Noticeably, the chiral Se nanomembrane precisely distinguished L-Kyn in serum and cerebrospinal fluid samples from Alzheimer's disease patients and healthy subjects.

9.
Adv Mater ; 35(49): e2308198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721365

RESUMO

The chemical, physical and biological effects of chiral nanomaterials have inspired general interest and demonstrated important advantages in fundamental science. Here, chiral iron oxide supraparticles (Fe3 O4 SPs) modified by chiral penicillamine (Pen) molecules with g-factor of ≈2 × 10-3 at 415 nm are fabricated, and these SPs act as high-quality magnetic resonance imaging (MRI) contrast agents. Therein, the transverse relaxation efficiency and T2 -MRI results demonstrated chiral Fe3 O4 SPs have a r2 relaxivity of 157.39 ± 2.34 mM-1 ·S-1 for D-Fe3 O4 SPs and 136.21 ± 1.26 mM-1 ·S-1 for L-Fe3 O4 SPs due to enhanced electronic transition dipole moment for D-Fe3 O4 SPs compared with L-Fe3 O4 SPs. The in vivo MRI results show that D-Fe3 O4 SPs exhibit two-fold lower contrast ratio than L-Fe3 O4 SPs, which enhances targeted enrichment in tumor tissue, such as prostate cancer, melanoma and brain glioma tumors. Notably, it is found that D-Fe3 O4 SPs have 7.7-fold higher affinity for the tumor cell surface receptor cluster-of-differentiation 47 (CD47) than L-Fe3 O4 SPs. These findings uncover that chiral Fe3 O4 SPs act as a highly effective MRI contrast agent for targeting and imaging broad tumors, thus accelerating the practical application of chiral nanomaterials and deepening the understanding of chirality in biological and non-biological environments.


Assuntos
Neoplasias Encefálicas , Glioma , Masculino , Humanos , Compostos Férricos , Meios de Contraste , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
10.
Nanoscale ; 15(10): 5092-5093, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36815425

RESUMO

Correction for 'Chiral Se@CeO2 superparticles for ameliorating Parkinson's disease' by Ximing Liu et al., Nanoscale, 2023, https://doi.org/10.1039/d2nr04534f.

11.
Nanoscale ; 15(9): 4367-4377, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36625333

RESUMO

In this study, we prepare chiral D-/L-type Se@CeO2 superparticles (D-/L-SPs) with a g-factor of 0.018 using D-/L-cysteine as chiral ligands. The chiral SPs demonstrate ultra-high enzyme activity of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Due to the synergistic effect between Se and CeO2, the maximum initial velocity of GPx, CAT, and POD for L-SP is 10, 7, and 5.6 times higher than that of a mixture of Se nanoparticles (NPs) and CeO2 NPs. Significantly, the chiral L-SPs show much stronger ROS scavenging ability than D-SP in the PD-like cell model. Moreover, the amount of α-synuclein (α-syn) in the cerebrospinal fluid of PD mice is reduced by 70.7% within two weeks. The L-SPs effectively alleviate neurodegeneration in a mouse model of PD, showing potential applications in the clinical treatment of neurodegenerative diseases.


Assuntos
Nanopartículas Metálicas , Doença de Parkinson , Animais , Camundongos , Catalase , Glutationa Peroxidase , Doença de Parkinson/terapia , Superóxido Dismutase , Selênio/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
12.
Nanomicro Lett ; 15(1): 39, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652114

RESUMO

For decades, chiral nanomaterials have been extensively studied because of their extraordinary properties. Chiral nanostructures have attracted a lot of interest because of their potential applications including biosensing, asymmetric catalysis, optical devices, and negative index materials. Circularly polarized light (CPL) is the most attractive source for chirality owing to its high availability, and now it has been used as a chiral source for the preparation of chiral matter. In this review, the recent progress in the field of CPL-enabled chiral nanomaterials is summarized. Firstly, the recent advancements in the fabrication of chiral materials using circularly polarized light are described, focusing on the unique strategies. Secondly, an overview of the potential applications of chiral nanomaterials driven by CPL is provided, with a particular emphasis on biosensing, catalysis, and phototherapy. Finally, a perspective on the challenges in the field of CPL-enabled chiral nanomaterials is given.

13.
Chem Sci ; 13(35): 10281-10290, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277618

RESUMO

The emergence of antibiotic resistance makes the therapeutic effect of traditional antibiotics far from satisfactory. Here, chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology are reported, and used in the fight against bacterial infection. Specifically, the dipeptide of d-/l-Cys-Phe (CF) caused the nano-bipyramids to form a spike shape with an optical anisotropy factor of 0.102 at 573 nm. The antibacterial effects showed that d-GBPs and l-GBPs could efficiently destroy bacteria with a death ratio of 98% and 70% in vitro. Also, both in vivo skin infection and sepsis models showed that the chiral GBPs could effectively promote wound healing and prevent sepsis in mice. Mechanistic studies showed that the binding affinity of d-GBPs (1.071 ± 0.023 × 108 M-1) was 12.39-fold higher than l-GBPs (8.664 ± 0.251 × 106 M-1) to protein A of Staphylococcus aureus, which caused further adsorption of d-GBPs onto the bacterial surface. Moreover, the physical destruction of the bacterial cell wall caused by the spike chiral GBPs, resulted in a stronger antibacterial effect for d-GBPs than l-GBPs. Furthermore, the excellent PTT of d-/l-GBPs further exacerbated the death of bacteria without any side-effect. Overall, chiral nano-bipyramids have opened a new avenue for improved antibacterial efficacy in the treatment of bacterial infections.

14.
Small ; 18(42): e2202741, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108137

RESUMO

In this study, manganese-based multiply hierarchical chiral supraparticles (SPs), with an anisotropy factor (g-factor) of 0.102 and circular dichroism (CD) intensity of 260 mdeg at 530 nm, are successfully synthesized with polar-solvent-mediated strategies. Notably, the g-factor of the SPs is further enhanced to 0.121 by the addition of an external chiral solvent, generating a chiral biased environment, which increases their CD intensity to 320 mdeg at 500 nm. The mechanism underlying the different chirality is proposed to be a difference in the angle of tilt of ±33° between the two enantiomers of the chiral SPs, which involves a difference of ±7° between the orientation of individual nanoplatelets. Chiral solvents induce the angle between adjacent nanoplatelets to get smaller than the original structure that leads to their higher anisotropic value. These findings potentially provide a practical method for the construction of complex chiral superstructures and the regulation of chiroptical activity.


Assuntos
Manganês , Solventes/química , Dicroísmo Circular , Estereoisomerismo , Íons
15.
Small ; 18(39): e2204219, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36038354

RESUMO

Chiral inorganic nanomaterials have shown promise as a potential means of combating bacteria due to their high levels of biocompatibility, easy surface modification, and excellent optical properties. In this study, a diverse range of chiral hierarchical nanomaterials are prepared from Co2+ and L/D-Tartaric acid (Tar) ligands. By combining the ligands in different ratios, chiral Co superstructures (Co SS) are obtained with different morphologies, including chiral nanoflowers, chiral nanohanamaki, a chiral six-pointed star, a chiral fan shape, and a chiral fusiform shape. It is found that the chiral six-pointed star structures exhibit chiroptical activity across a broad range of wavelengths from 300 to 1300 nm and that the g-factor is as high as 0.033 with superparamagnetic properties. Under the action of electromagnetic fields, the chiral six-pointed star Co SS shows excellent killing ability against Gram-positive Staphylococcus aureus (ATCC 25923). Compared to L-Co SS, D-Co SS shows stronger levels of antibacterial ability. It is found that the levels of reactive oxygen species generated by D-Co SS are 1.59-fold higher than L-Co SS which is attributed to chiral-induced spin selectivity effects. These findings are of significance for the further development of chiral materials with antibacterial properties.


Assuntos
Antibacterianos , Cobalto , Antibacterianos/química , Antibacterianos/farmacologia , Cobalto/química , Ligantes , Espécies Reativas de Oxigênio , Staphylococcus aureus
16.
ACS Nano ; 16(7): 11066-11075, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35776106

RESUMO

The realization of chiral magnetic effect by macroscopically manipulating quantum states of chiral matter under the magnetic field makes a future for information transmission, memory storage, magnetic cooling materials etc., while the microscopic tiny signal differences of at the interface electrons are laborious to be discerned. Here, chiromagnetic iron oxide (Fe3O4) nanofilms were successfully prepared by modulating the magnetic and electrical transition dipoles and combined with confined ion transport, enabling magnetic field-tunable ionic currents with markedly ∼7.91-fold higher for l-tartaric acid (TA)-modified Fe3O4 nanofilms than that by d-TA. The apparent amplification results from the charge redistribution at the ferromagnetic-organic interface under the influence of the chiral magnetic effect, resulting in a significant potential difference across the nanofilms that drive ion transport in the confined environment. This strategy, on the one hand, makes it possible to efficiently characterize the electronic microimbalance state in chiral substances induced by the magnetic field and, on the other hand realizes the discrimination and highly sensitive quantitative detection of chiral drug enantiomers, which give insights for the in-depth understanding of chiral magnetic effects and efficient enantiomeric recognition.

17.
Chem Sci ; 13(22): 6642-6654, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35756519

RESUMO

Parkinson's disease (PD) is an age-related neurodegenerative disease, and the removal of senescent cells has been proved to be beneficial for improving age-associated pathologies in neurodegeneration disease. In this study, chiral gold nanoparticles (NPs) with different helical directions were synthesized to selectively induce the apoptosis of senescent cells under light illumination. By modifying anti-B2MG and anti-DCR2 antibodies, senescent microglia cells could be cleared by chiral NPs without damaging the activities of normal cells under illumination. Notably, l-P+ NPs exhibited about a 2-fold higher elimination efficiency than d-P- NPs for senescent microglia cells. Mechanistic studies revealed that the clearance of senescent cells was mediated by the activation of the Fas signaling pathway. The in vivo injection of chiral NPs successfully confirmed that the elimination of senescent microglia cells in the brain could further alleviate the symptoms of PD mice in which the alpha-synuclein (α-syn) in cerebrospinal fluid (CFS) decreased from 83.83 ± 4.76 ng mL-1 to 8.66 ± 1.79 ng mL-1 after two months of treatment. Our findings suggest a potential strategy to selectively eliminate senescent cells using chiral nanomaterials and offer a promising strategy for alleviating PD.

18.
Nat Nanotechnol ; 17(4): 408-416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288671

RESUMO

Optoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces. Self-assembled multilayers of gold nanoparticles modified with L-phenylalanine generate a photocurrent under right-handed circularly polarized light as high as 2.41 times higher than under left-handed circularly polarized light. The strong plasmonic coupling between the multiple nanoparticles producing planar chiroplasmonic modes facilitates the ejection of electrons, whose entrapment at the membrane-electrolyte interface is promoted by a thick layer of enantiopure phenylalanine. Demonstrated detection of light ellipticity with equal sensitivity at all incident angles mimics phenomenological aspects of polarization vision in marine animals. The simplicity of self-assembly and sensitivity of polarization detection found in optoionic membranes opens the door to a family of miniaturized fluidic devices for chiral photonics.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Elétrons , Óptica e Fotônica , Fótons
19.
Adv Mater ; 34(16): e2109354, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35176181

RESUMO

The chirality of nanomaterials (nanoparticles, NPs) can influence their interaction with cells and biological systems. However, how chirality can exert impact on the immune response has yet to be investigated. Here, the immunological effect of chiral nanomaterials is investigated as a therapeutic and preventive option against tumors. Compared with achiral nanoparticles, chiral NPs with a g-factor of 0.44 are shown to enhance both innate and acquired immunity against tumor growth. It is also found that chiral NPs enhance the activation of CD8+ T and natural killer cells (CD69+ NK cells) by stimulating dendritic cells (DCs). Importantly, L-type NPs induce a 1.65-fold higher proportion of CD8+ T and CD69+ NK cells than D-type NPs. Next, the therapeutic and preventative effects of chiral NPs against tumors in a EG7.OVA tumor model are investigated. It is found that L-type NPs have a significant greater ability to induce apoptosis in tumor cells and prolong the survival time of model mice than D-type NPs. Mice treated with L-type NPs induce the activation of 84.98 ± 6.63% CD8+ T cells and 33.62 ± 3.41% of NK cells in tumor tissues; these are 1.62-fold and 1.39-fold higher than that seen in the mice treated with D-type NPs. Mechanistic studies reveal that chiral NPs exert mechanical force on bone-marrow-derived dendritic cells (BMDCs) and stimulate the expression of cytokines to induce cytotoxic activity in NK cells. Synergistically, the CD8+ T cells are stimulated to eliminate tumor cells via antigen cross presentation. The force of interaction between L-type NPs and cells is higher than that for D-NPs, thus further promoting the activation of NK cells and CD8+ T cells and their infiltration into tumor tissue. These findings open up a new avenue for chiral nanomaterials to act as immunoadjuvants for the prevention and treatment of cancer.


Assuntos
Nanopartículas , Neoplasias , Animais , Apresentação de Antígeno , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Células Dendríticas , Imunoterapia , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos C57BL
20.
J Am Chem Soc ; 144(4): 1580-1588, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061388

RESUMO

Biological application of chiral nanoparticles (NPs) has aroused enormous levels of attention over recent years. Here, we synthesized magneto-chiral cobalt hydroxide (Co(OH)2) NPs that exhibited strong chiroptical and unique magnetic properties and applied these NPs to detect and monitor reactive oxygen species (ROS) in living cells and in vivo. Circular dichroism (CD) and magnetic resonance imaging (MRI) signals of the magneto-chiral Co(OH)2 NPs exhibited a wide intracellular ROS detection range from 0.673 to 612.971 pmol/106 cells with corresponding limits of detection (LOD) at 0.087 and 0.179 pmol/106 cells, far below that of currently available probes; the LOD for d-aspartic acid coated Co(OH)2 NPs (d-Co(OH)2 NPs) was 5.7 times lower than that for l-aspartic acid coated Co(OH)2 NPs (l-Co(OH)2 NPs) based on the CD signals. In addition, d-Co(OH)2 NPs also exhibited dynamic ROS monitoring ability. The high levels of selectivity and sensitivity to ROS in complex biological environments can be attributed to the Co2+ oxidation reaction on the surface of the NPs. Furthermore, magneto-chiral Co(OH)2 NPs were able to quantify the levels of ROS in living mice by fluorescence and MRI signals. Collectively, these results reveal that magneto-chiral Co(OH)2 NPs exhibit a remarkable ability to quantify ROS levels in living organisms, and could therefore provide new tools for exploring chiral nanomaterials as a potential biosensor to investigate biological events.


Assuntos
Cobalto/química , Hidróxidos/química , Nanopartículas/química , Espécies Reativas de Oxigênio/análise , Animais , Ácido Aspártico/química , Linhagem Celular Tumoral , Dicroísmo Circular , Humanos , Limite de Detecção , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Neoplasias/diagnóstico por imagem , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...